Saturday, October 18, 2014

Does Literary Fiction Challenge Racial Stereotypes?

A book is a mirror: if a fool looks in, do not expect an apostle to look out.
                                                                Georg Christoph Lichtenberg (1742-1799)

Reading literary fiction can be highly pleasurable, but does it also make you a better person? Conventional wisdom and intuition lead us to believe that reading can indeed improve us. However, as the philosopher Emrys Westacott has recently pointed out in his essay for 3Quarksdaily, we may overestimate the capacity of literary fiction to foster moral improvement. A slew of scientific studies have taken on the task of studying the impact of literary fiction on our emotions and thoughts. Some of the recent research has centered on the question of whether literary fiction can increase empathy. In 2013, Bal and Veltkamp published a paper in the journal PLOS One showing that subjects who read excerpts from literary texts scored higher on an empathy scale than those who had read a nonfiction text. This increase in empathy was predominantly found in the participants who felt "transported" (emotionally and cognitively involved) into the literary narrative. Another 2013 study published in the journal Science by Kidd and Castano suggested that reading literary fiction texts increased the ability to understand and relate to the thoughts and emotions of other humans when compared to reading either non-fiction or popular fiction texts.

Scientific assessments of how fiction affects empathy are fraught with difficulties and critics raise many legitimate questions. Do "empathy scales" used in psychology studies truly capture the psychological phenomenon of "empathy"? How long does the effect of reading literary fiction last and does it translate into meaningful shifts in behavior? How does one select appropriate literary fiction texts and control texts, and conduct such studies in a heterogeneous group of participants who probably have very diverse literary tastes? Kidd and Castano, for example, used an excerpt of The Tiger's Wife by Téa Obreht as a literary fiction text because the book was a finalist for the National Book Award, whereas an excerpt of Gone Girl by Gillian Flynn was used as a ‘popular fiction' text even though it was long-listed for the prestigious Women's Prize for Fiction.
The study "Changing Race Boundary Perception by Reading Narrative Fiction" led by the psychology researcher Dan Johnson from Washington and Lee University took a somewhat different approach. Instead of assessing global changes in empathy, Johnson and colleagues focused on a more specific question. Could the reading of a fictional narrative change the perception of racial stereotypes?

Johnson and his colleagues chose an excerpt from the novel "Saffron Dreams" by the Pakistani-American author Shaila Abdullah. In this novel, the protagonist is a recently widowed pregnant Muslim woman Arissa whose husband Faizan was working in the World Trade Center on September 11, 2001 and killed when the building collapsed. The excerpt from the novel provided to the participants in Johnson's research study describes a scene in which Arissa is traveling alone late at night and is attacked by a group of male teenagers. The teenagers mock and threaten her with a knife because of her Muslim head-scarf (hijab), use racial and ethnic slurs as well as make references to the 9/11 attacks. The narrative excerpt does not specifically mention the word Caucasian, but one of the attackers is identified as blond and another one has a swastika tattoo. They do not believe her when she tries to explain that she was also a victim of the 9/11 attacks and instead refer to her as belonging to a "race of murderers".

The researchers used a second text in their experiment, a synopsis of the literary excerpt from Saffron Dreams. This allowed Johnson colleagues to distinguish between the effects of the literary narrative style with its inner monologue and description of emotions versus the effects of the content. Samples of the literary text and the synopsis used by the researchers can be found at the end of this article (scroll down) for those readers who would like to compare their own reactions to the two texts.
The researchers recruited 68 U.S. participants (mean age 36 years, roughly half were female, 81% Caucasian, reporting seven different religious affiliations but none of them were Muslim) and randomly assigned them to the full literary narrative group (33 participants) or the synopsis group (35 participants).  After the participants read the texts, they were asked to complete a number of questions about the text and its impact on them. They were also presented with 18 male faces that the researchers had designed with a special software in a manner that they appeared ambiguous in terms of Caucasian or Arab characteristics. For example, the faces combined blue eyes with darker skin tones.

The participants were asked to grade the faces as being:
1) Arab
2) mixed, more Arab than Caucasian
3) mixed, more Caucasian than Arab
4) Caucasian

The participants were also asked to estimate the genetic overlap between Caucasians and Arabs on a scale from 0% to 100%.

Participants in the narrative fiction group were more likely to choose one of the ambiguous options (mixed, more Arab than Caucasian or mixed, more Caucasian than Arab) and less likely to choose the categorical options (Arab or Caucasian) than those who read the synopsis. Even more interesting is the finding that the average percentage of genetic overlap between Caucasians and Arabs estimated by the synopsis group was 33%, whereas it was 57% in the narrative fiction group.

Both of these estimates are way off. The genetic overlap between any one human being and another human being on our planet is approximately 99.9%. Even much of the 0.1% variation in the human genome sequences is not due to 'racial' differences. As pointed out in a Nature Genetics article by Lynn Jorde and Stephen Wooding, approximately 90% of total genetic variation between humans would be present in a collection of individuals from any one continent (Asia, Europe or Africa). Only an additional 10% genetic variation would be found if the collection consisted of a mixture of Europeans, Asians and Africans.

It is surprising that both groups of study participants heavily underestimated the genetic overlap between Arabs and Caucasians, and that simply reading the fictional text changed their views of the human genome. This latter finding is also a red flag that informs us about the poor state of general knowledge of genetics, which appears to be so fragile that views can be swayed by nonscientific literary texts.

This study is the first to systematically test the impact of reading literary fiction on an individual's assessment of race boundaries and genetic similarity. It suggests that fiction can indeed blur the perception of race boundaries and challenge our stereotypes. The text chosen by the researchers is especially well-suited to defy stereotypical views held by the readers. The protagonist's Muslim husband was killed in the 9/11 attacks and she herself is being harassed by non-Muslim thugs. This may challenge assumptions held by some readers that only non-Muslims were the victims of the 9/11 attacks.

The effect of reading the narrative text seemed to have effects on the readers that went far beyond the content matter – the story of a Muslim woman who is showing significant courage while being threatened. The faces shown to the study participants were those of men, and the question of genetic overlap between Caucasians and Arabs was a rather abstract question which had little to do with Arissa's story. Perhaps Arissa's story had a broader effect on the readers. The study did not measure the impact of the narrative on additional stereotypes or assumptions held by the readers such as those regarding other races or sexual orientations, but this is a question that ought to be investigated.
One of the limitations of the study is that it assessed the impact of the story only at a single time-point, immediately after reading the text. Without measuring the effect a few days or weeks later, it is difficult to ascertain whether this was a lasting effect.  Another limitation of this study is that it purposefully chose an anti-stereotypical text, but did not test the opposite hypothesis, that some fictional narratives may potentially foster negative stereotypes.

One of my earliest memories of an English-language novel about Muslim characters is the spy novel "The Mahdi" by the British author A.J Quinnell (pen name for Philip Nicholson) written in 1981. The basic plot is that (spoiler alert) US and British intelligence agencies want to manipulate and control the Muslim world by installing a 'Mahdi', the long-awaited spiritual and political leader of Muslims foretold by Muslim tradition. The ridiculous part of the plan is that the puppet leader is accepted by the Muslim world as the true incarnation of the Mahdi because of a green laser beam emanating from a satellite. The beam incinerates a sacrificial animal in front of a crowd of millions of Muslims at the Hajj pilgrimage and convinces them (and the rest of the Muslim world) that God sent this green laser beam as a sign. This novel portrayed Muslims as gullible idiots who would simply accept the divine nature of a green laser beam. One can only wonder what impact reading an excerpt from that novel would have had on the perception of race boundaries by study participants.

The study by Johnson and colleagues is an important contribution to the research of how reading can change our perceptions of race and possibly stereotypes in general. It shows that reading fiction can blur the perception of race boundaries, but it also raises a number of additional questions about how long this effect lasts, how pervasive it is and whether fiction might also have the opposite effect. Hopefully, these questions will be addressed in future research studies.

Image Credit: Saffron Woman by N.M. Rehman (generated from an attribution-free, public domain photograph)


Dan R. Johnson , Brandie L. Huffman & Danny M. Jasper (2014)
Changing Race Boundary Perception by Reading Narrative FictionBasic and Applied Social Psychology, 36:1, 83-90, DOI:10.1080/01973533.2013.856791

Excerpt of the literary fiction sample from "Saffron Dreams" by Shaila Abdullah
 This is just an excerpt from the narrative sample used by the researchers, which was 3,108 words in length (pages 57-64 from the book):
"I got off the northbound No. 2 IRT and found out almost immediately that I was not alone. The late October evening inside the station felt unusually weighty on my senses.
I heard heavy breathing behind me. Angry, smoky, scared. I could tell there were several of them, probably four. Not pros, perhaps in their teens. They walked closer sometimes, and other times the heavy thud of spiked boots on concrete and clanking chains receded into the distance. They walked like boys wanting to be men. They fell short. Why was there no fear in my heart? Probably because there was no more room in my heart for terror. When horror comes face-to-face with you and causes a loved one's death, fear leaves your heart. In its place, merciful God places pain. Throbbing, pulsating, oozing pus, a wound that stays fresh and raw no matter how carefully you treat it. How can you be afraid when you have no one to be fearful for? The safety of your loved ones is what breeds fear in your heart. They are the weak links in your life. Unraveled from them, you are fearless. You can dangle by a thread, hang from the rooftop, bungee jump, skydive, walk a pole, hold your hand over the flame of a candle. Burnt, scalded, crashed, lost, dead, the only loss would be to your own self. Certain things you are not allowed to say or do. Defiant as I am, I say and do them anyway.
And so I traveled with a purse that I held protectively on one side. My hijab covered my head and body as the cool breeze threatened to unveil me. I laughed inwardly as I realized I was more afraid of losing the veil than of being mugged. The funny part of it is, I desperately wanted to lose my hijab when I came to America, but Faizan had stood in my way. For generations, women in his household had worn the veil, although none of them seemed particularly devout. It's just something that was done, no questions asked, no explanations needed. My argument was that we should try to assimilate into the new culture as much as possible, not stand out. Now that he was gone, losing the hijab meant losing a portion of our time together.
It had been just 41 days. My iddat, bereavement period, was over. Technically I was a free woman, not tied to anyone, but what could I do about the skeletons in my closet that wouldn't leave me alone?"
Excerpt of the Synopsis used by the researchers as a comparator:
This is the corresponding excerpt from the synopsis used by the researchers. The full-length synopsis was 491 words long:
"The scene starts with Arissa getting off the subway train. She is being followed. Most commuters have already returned home, so it is not the safest time to be traveling alone. Four people are walking behind her. Initially confused by the lack of fear in her heart, she realizes that it is the consequence of losing someone so close to her. It is ironic that she is wearing her hijab, a Muslim veil. She wanted to get rid of it when she came to America, but her husband, Faizon, insisted she keep it. Following his death, keeping the hijab was a way of keeping some of their time together. It has been 41 days since the attack, and Arissa's iddat, bereavement period, is over. She is a free woman, but cannot put aside her grave feelings of loss."

Note: An earlier version of this article was first published on the 3Quarksdaily blog. Johnson, D., Huffman, B., & Jasper, D. (2014). Changing Race Boundary Perception by Reading Narrative Fiction Basic and Applied Social Psychology, 36 (1), 83-90 DOI: 10.1080/01973533.2013.856791

Buddhist Musings in Ramadan

Ramadan is the month of fasting and a time for spiritual growth among Muslims. The traditionalist approach to "spiritual growth" is for Muslims to complement their fasting with performing additional prayers at night and regular reading of the Quran throughout the month. My own approach is somewhat different, I tend to complement my fasting with the reading of writings and scriptures from other philosophies or faith traditions, including atheist and humanist teachings. This year, I decided to study the Dhammapada (in the translation of Gil Fronsdal), one of the most widely read and revered writings in the Buddhist faith.

Buddha Statue from the Takht-i-Bahi monastery in Pakistan

I was inspired to learn more about Buddhism because I was reading the remarkable novel "A Tale for the Time Being" by Ruth Ozeki, who is not only a brilliant author but also an ordained Zen Buddhist priest. The first person narrator in the novel is a 16-year old Japanese girl Nao who is bullied by her classmates. Nao's parents moved from Japan to Silicon Valley but were forced to return to Japan when the Dotcom bubble burst. Nao's father loses his job and the family is forced to live in poverty. The family's poverty and the fact that Nao is seen as an alien "transfer student" lead to her being ostracized at school. But her classmates go even further and begin psychologically and physically torturing her, leaving scars and scabs all over her body.

A photo of the Takht-i-Bahi monastery, the most complete ancient Buddhist monastic center in Pakistan and a UNESCO World heritage site

Nao is invited to spend the summer with her 104-year old great-grandmother Jiko who is a Buddhist nun. In the following scene, Jiko takes a bath with Nao and notices the scars:

"I waited. Old Jiko liked to take her time, and she was really good at it because she'd been practicing for so many years, so as a result, I was always waiting for her, and you'd think that waiting would be annoying for a young person like me, but for some reason I didn't mind. It wasn't like I had anything better to do that summer. I sat there on my little wooden stool, naked and hugging my knees and shivering, not from the cold but in anticipation of the scalding heat of the water, so when, instead, I felt her fingertip touch a small scar in the middle of my back, I was startled. My body stiffened. The light was so dim, how could she see my scars with her bad eyes? I figured she couldn't, but then I felt her finger move across my skin in a pattern, hesitant, pausing here and there to connect the dots."You must be very angry," she said. She spoke so quietly, it was like she was talking to herself, and maybe she was. Or maybe she hadn't said anything at all, and I'd just imagined it. Either way, my throat squeezed shut and I couldn't answer, so I shook my head. I was so ashamed, but at the same time, this enormous feeling of sadness brimmed up inside me, and I had to hold my breath to stop from crying.
She didn't say anything else. She washed me gently, and for the first time I just wanted her to hurry up and finish. After we were done, I got dressed quickly and said good night and left her there. I thought I was going to throw up. I didn't want to go back to my room, so I ran halfway down the mountainside and hid in the bamboo forest until it got dark and the fireflies came out. When Muji rang the big bell at the end of her fire watch to signal the end of the day, I snuck back into the temple and crawled into bed.
The next morning I went looking for old Jiko and found her in her room. She was sitting on the floor with her back to the door, bent over her low table. She was reading. I stood in the doorway and didn't even bother to go in. "Yes," I told her. "I'm angry, so what?"

(excerpted from novel "A Tale for the Time Being" by Ruth Ozeki)

Once Nao is able to speak about her anger to Jiko, Nao's healing process can begin. The story makes frequent references to Buddhist teachings, quoting from Buddhist texts as well as allowing the reader to gradually imbibe important spiritual concepts. To better understand these concepts, I decided to read the Dhammapada

I first began with the chapter on "Anger" where I was struck by the following verses:

"The one who keeps anger in check as it arises,
            As one would a careening chariot,
I call a charioteer.
            Others are merely rein-holders."

How often do we let our anger chariot determine our paths? I can remember countless times when I have been passively holding the reins but rarely take control of this chariot.
I will just leave you with one more excerpt from the Dhammapada, but I advise you to read it (and, of course, Ozeki's novel!) in its entirety:

From the chapter "The Sage":

"As a solid mass of rock,
            Is not moved by the wind,
So a sage is not moved
            By praise or blame."

Image credit: 1) Buddha statue now housed in Berlin, image by Gryffindor via Wikimedia, 2) Takht-i-Bahi monastery ruins in Northern Pakistan, image by Ziegler175 via Wikimedia.

The Road to Bad Science Is Paved with Obedience and Secrecy

We often laud intellectual diversity of a scientific research group because we hope that the multitude of opinions can help point out flaws and improve the quality of research long before it is finalized and written up as a manuscript. The recent events surrounding the research in one of the world's most famous stem cell research laboratories at Harvard shows us the disastrous effects of suppressing diverse and dissenting opinions.
The infamous "Orlic paper" was a landmark research article published in the prestigious scientific journal Nature in 2001, which showed that stem cells contained in the bone marrow could be converted into functional heart cells. After a heart attack, injections of bone marrow cells reversed much of the heart attack damage by creating new heart cells and restoring heart function. It was called the "Orlic paper" because the first author of the paper was Donald Orlic, but the lead investigator of the study was Piero Anversa, a professor and highly respected scientist at New York Medical College.

Anversa had established himself as one of the world's leading experts on the survival and death of heart muscle cells in the 1980s and 1990s, but with the start of the new millennium, Anversa shifted his laboratory's focus towards the emerging field of stem cell biology and its role in cardiovascular regeneration. The Orlic paper was just one of several highly influential stem cell papers to come out of Anversa's lab at the onset of the new millenium. A 2002 Anversa paper in the New England Journal of Medicine – the world's most highly cited academic journal –investigated the hearts of human organ transplant recipients. This study showed that up to 10% of the cells in the transplanted heart were derived from the recipient's own body. The only conceivable explanation was that after a patient received another person's heart, the recipient's own cells began maintaining the health of the transplanted organ. The Orlic paper had shown the regenerative power of bone marrow cells in mouse hearts, but this new paper now offered the more tantalizing suggestion that even human hearts could be regenerated by circulating stem cells in their blood stream.

2003 publication in Cell by the Anversa group described another ground-breaking discovery, identifying a reservoir of stem cells contained within the heart itself. This latest coup de force found that the newly uncovered heart stem cell population resembled the bone marrow stem cells because both groups of cells bore the same stem cell protein called c-kit and both were able to make new heart muscle cells. According to Anversa, c-kit cells extracted from a heart could be re-injected back into a heart after a heart attack and regenerate more than half of the damaged heart!

These Anversa papers revolutionized cardiovascular research. Prior to 2001, most cardiovascular researchers believed that the cell turnover in the adult mammalian heart was minimal because soon after birth, heart cells stopped dividing. Some organs or tissues such as the skin contained stem cells which could divide and continuously give rise to new cells as needed. When skin is scraped during a fall from a bike, it only takes a few days for new skin cells to coat the area of injury and heal the wound. Unfortunately, the heart was not one of those self-regenerating organs. The number of heart cells was thought to be more or less fixed in adults. If heart cells were damaged by a heart attack, then the affected area was replaced by rigid scar tissue, not new heart muscle cells. If the area of damage was large, then the heart's pump function was severely compromised and patients developed the chronic and ultimately fatal disease known as "heart failure".

Anversa's work challenged this dogma by putting forward a bold new theory: the adult heart was highly regenerative, its regeneration was driven by c-kit stem cells, which could be isolated and used to treat injured hearts. All one had to do was harness the regenerative potential of c-kit cells in the bone marrow and the heart, and millions of patients all over the world suffering from heart failure might be cured. Not only did Anversa publish a slew of supportive papers in highly prestigious scientific journals to challenge the dogma of the quiescent heart, he also happened to publish them at a unique time in history which maximized their impact.

In the year 2001, there were few innovative treatments available to treat patients with heart failure. The standard approach was to use medications that would delay the progression of heart failure. But even the best medications could not prevent the gradual decline of heart function. Organ transplants were a cure, but transplantable hearts were rare and only a small fraction of heart failure patients would be fortunate enough to receive a new heart. Hopes for a definitive heart failure cure were buoyed when researchers isolated human embryonic stem cells in 1998. This discovery paved the way for using highly pliable embryonic stem cells to create new heart muscle cells, which might one day be used to restore the heart's pump function without  resorting to a heart transplant.

The dreams of using embryonic stem cells to regenerate human hearts were soon squashed when the Bush administration banned the generation of new human embryonic stem cells in 2001, citing ethical concerns. These federal regulations and the lobbying of religious and political groups against human embryonic stem cells were a major blow to research on cardiovascular regeneration. Amidst this looming hiatus in cardiovascular regeneration, Anversa's papers appeared and showed that one could steer clear of the ethical controversies surrounding embryonic stem cells by using an adult patient's own stem cells. The Anversa group re-energized the field of cardiovascular stem cell research and cleared the path for the first human stem cell treatments in heart disease.

Instead of having to wait for the US government to reverse its restrictive policy on human embryonic stem cells, one could now initiate clinical trials with adult stem cells, treating heart attack patients with their own cells and without having to worry about an ethical quagmire. Heart failure might soon become a disease of the past. The excitement at all major national and international cardiovascular conferences was palpable whenever the Anversa group, their collaborators or other scientists working on bone marrow and cardiac stem cells presented their dizzyingly successful results. Anversa received numerous accolades for his discoveries and research grants from the NIH (National Institutes of Health) to further develop his research program. He was so successful that some researchers believed Anversa might receive the Nobel Prize for his iconoclastic work which had redefined the regenerative potential of the heart. Many of the world's top universities were vying to recruit Anversa and his group, and he decided to relocate his research group to Harvard Medical School and Brigham and Women's Hospital 2008.

There were naysayers and skeptics who had resisted the adult stem cell euphoria. Some researchers had spent decades studying the heart and found little to no evidence for regeneration in the adult heart. They were having difficulties reconciling their own results with those of the Anversa group. A number of practicing cardiologists who treated heart failure patients were also skeptical because they did not see the near-miraculous regenerative power of the heart in their patients. One Anversa paper went as far as suggesting that the whole heart would completely regenerate itself roughly every 8-9 years, a claim that was at odds with the clinical experience of practicing cardiologists.  Other researchers pointed out serious flaws in the Anversa papers. For example, the 2002 paper on stem cells in human heart transplant patients claimed that the hearts were coated with the recipient's regenerative cells, including cells which contained the stem cell marker Sca-1. Within days of the paper's publication, many researchers were puzzled by this finding because Sca-1 was a marker of mouse and rat cells – not human cells! If Anversa's group was finding rat or mouse proteins in human hearts, it was most likely due to an artifact. And if they had mistakenly found rodent cells in human hearts, so these critics surmised, perhaps other aspects of Anversa's research were similarly flawed or riddled with artifacts.

At national and international meetings, one could observe heated debates between members of the Anversa camp and their critics. The critics then decided to change their tactics. Instead of just debating Anversa and commenting about errors in the Anversa papers, they invested substantial funds and efforts to replicate Anversa's findings. One of the most important and rigorous attempts to assess the validity of the Orlic paper was published in 2004, by the research teams of Chuck Murry and Loren Field. Murry and Field found no evidence of bone marrow cells converting into heart muscle cells. This was a major scientific blow to the burgeoning adult stem cell movement, but even this paper could not deter the bone marrow cell champions.

Despite the fact that the refutation of the Orlic paper was published in 2004, the Orlic paper continues to carry the dubious distinction of being one of the most cited papers in the history of stem cell research. At first, Anversa and his colleagues would shrug off their critics' findings or publish refutations of refutations – but over time, an increasing number of research groups all over the world began to realize that many of the central tenets of Anversa's work could not be replicated and the number of critics and skeptics increased. As the signs of irreplicability and other concerns about Anversa's work mounted, Harvard and Brigham and Women's Hospital were forced to initiate an internal investigation which resulted in the retraction of one Anversa paper and an expression of concern about another major paper. Finally, a research group published a paper in May 2014 using mice in which c-kit cells were genetically labeled so that one could track their fate and found that c-kit cells have a minimal – if any – contribution to the formation of new heart cells: a fraction of a percent!

The skeptics who had doubted Anversa's claims all along may now feel vindicated, but this is not the time to gloat. Instead, the discipline of cardiovascular stem cell biology is now undergoing a process of soul-searching. How was it possible that some of the most widely read and cited papers were based on heavily flawed observations and assumptions? Why did it take more than a decade since the first refutation was published in 2004 for scientists to finally accept that the near-magical regenerative power of the heart turned out to be a pipe dream.

One reason for this lag time is pretty straightforward: It takes a tremendous amount of time to refute papers. Funding to conduct the experiments is difficult to obtain because grant funding agencies are not easily convinced to invest in studies replicating existing research. For a refutation to be accepted by the scientific community, it has to be at least as rigorous as the original, but in practice, refutations are subject to even greater scrutiny. Scientists trying to disprove another group's claim may be asked to develop even better research tools and technologies so that their results can be seen as more definitive than those of the original group. Instead of relying on antibodies to identify c-kit cells, the 2014 refutation developed a transgenic mouse in which all c-kit cells could be genetically traced to yield more definitive results - but developing new models and tools can take years.

The scientific peer review process by external researchers is a central pillar of the quality control process in modern scientific research, but one has to be cognizant of its limitations. Peer review of a scientific manuscript is routinely performed by experts for all the major academic journals which publish original scientific results. However, peer review only involves a "review", i.e. a general evaluation of major strengths and flaws, and peer reviewers do not see the original raw data nor are they provided with the resources to replicate the studies and confirm the veracity of the submitted results. Peer reviewers rely on the honor system, assuming that the scientists are submitting accurate representations of their data and that the data has been thoroughly scrutinized and critiqued by all the involved researchers before it is even submitted to a journal for publication. If peer reviewers were asked to actually wade through all the original data generated by the scientists and even perform confirmatory studies, then the peer review of every single manuscript could take years and one would have to find the money to pay for the replication or confirmation experiments conducted by peer reviewers. Publication of experiments would come to a grinding halt because thousands of manuscripts would be stuck in the purgatory of peer review. Relying on the integrity of the scientists submitting the data and their internal review processes may seem naïve, but it has always been the bedrock of scientific peer review. And it is precisely the internal review process which may have gone awry in the Anversa group.

Pygmalion and Glatea by Louis Gauffier (via Wikimedia - Public Domain)

Just like Pygmalion fell in love with Galatea, researchers fall in love with the hypotheses and theories that they have constructed. To minimize the effects of these personal biases, scientists regularly present their results to colleagues within their own groups at internal lab meetings and seminars or at external institutions and conferences long before they submit their data to a peer-reviewed journal. The preliminary presentations are intended to spark discussions, inviting the audience to challenge the veracity of the hypotheses and the data while the work is still in progress. Sometimes fellow group members are truly skeptical of the results, at other times they take on the devil's advocate role to see if they can find holes in their group's own research. The larger a group, the greater the chance that one will find colleagues within a group with dissenting views. This type of feedback is a necessary internal review process which provides valuable insights that can steer the direction of the research.
Considering the size of the Anversa group – consisting of 20, 30 or even more PhD students, postdoctoral fellows and senior scientists – it is puzzling why the discussions among the group members did not already internally challenge their hypotheses and findings, especially in light of the fact that they knew extramural scientists were having difficulties replicating the work.
Retraction Watch is one of the most widely read scientific watchdogs which tracks scientific misconduct and retractions of published scientific papers. Recently, Retraction Watch published the account of an anonymous whistleblower who had worked as a research fellow in Anversa's group and provided some unprecedented insights into the inner workings of the group, which explain why the internal review process had failed:
"I think that most scientists, perhaps with the exception of the most lucky or most dishonest, have personal experience with failure in science—experiments that are unreproducible, hypotheses that are fundamentally incorrect. Generally, we sigh, we alter hypotheses, we develop new methods, we move on. It is the data that should guide the science.
 In the Anversa group, a model with much less intellectual flexibility was applied. The "Hypothesis" was that c-kit (cd117) positive cells in the heart (or bone marrow if you read their earlier studies) were cardiac progenitors that could: 1) repair a scarred heart post-myocardial infarction, and: 2) supply the cells necessary for cardiomyocyte turnover in the normal heart.
 This central theme was that which supplied the lab with upwards of $50 million worth of public funding over a decade, a number which would be much higher if one considers collaborating labs that worked on related subjects.
 In theory, this hypothesis would be elegant in its simplicity and amenable to testing in current model systems. In practice, all data that did not point to the "truth" of the hypothesis were considered wrong, and experiments which would definitively show if this hypothesis was incorrect were never performed (lineage tracing e.g.)."
Discarding data that might have challenged the central hypothesis appears to have been a central principle.

According to the whistleblower, Anversa's group did not just discard undesirable data, they actually punished group members who would question the group's hypotheses:
"In essence, to Dr. Anversa all investigators who questioned the hypothesis were "morons," a word he used frequently at lab meetings. For one within the group to dare question the central hypothesis, or the methods used to support it, was a quick ticket to dismissal from your position."
The group also created an environment of strict information hierarchy and secrecy which is antithetical to the spirit of science:
"The day to day operation of the lab was conducted under a severe information embargo. The lab had Piero Anversa at the head with group leaders Annarosa Leri, Jan Kajstura and Marcello Rota immediately supervising experimentation. Below that was a group of around 25 instructors, research fellows, graduate students and technicians. Information flowed one way, which was up, and conversation between working groups was generally discouraged and often forbidden.
 Raw data left one's hands, went to the immediate superior (one of the three named above) and the next time it was seen would be in a manuscript or grant. What happened to that data in the intervening period is unclear.
 A side effect of this information embargo was the limitation of the average worker to determine what was really going on in a research project. It would also effectively limit the ability of an average worker to make allegations regarding specific data/experiments, a requirement for a formal investigation."
This segregation of information is a powerful method to maintain an authoritarian rule and is more typical for terrorist cells or intelligence agencies than for a scientific lab, but it would definitely explain how the Anversa group was able to mass produce numerous irreproducible papers without any major dissent from within the group.
In addition to the secrecy and segregation of information, the group also created an atmosphere of fear to ensure obedience:
"Although individually-tailored stated and unstated threats were present for lab members, the plight of many of us who were international fellows was especially harrowing. Many were technically and educationally underqualified compared to what might be considered average research fellows in the United States. Many also originated in Italy where Dr. Anversa continues to wield considerable influence over biomedical research.
 This combination of being undesirable to many other labs should they leave their position due to lack of experience/training, dependent upon employment for U.S. visa status, and under constant threat of career suicide in your home country should you leave, was enough to make many people play along.
 Even so, I witnessed several people question the findings during their time in the lab. These people and working groups were subsequently fired or resigned. I would like to note that this lab is not unique in this type of exploitative practice, but that does not make it ethically sound and certainly does not create an environment for creative, collaborative, or honest science."
Foreign researchers are particularly dependent on their employment to maintain their visa status and the prospect of being fired from one's job can be terrifying for anyone.
This is an anonymous account of a whistleblower and as such, it is problematic. The use of anonymous sources in science journalism could open the doors for all sorts of unfounded and malicious accusations, which is why the ethics of using anonymous sources was heavily debated at the recent ScienceOnline conference. But the claims of the whistleblower are not made in a vacuum – they have to be evaluated in the context of known facts. The whistleblower's claim that the Anversa group and their collaborators received more than $50 million to study bone marrow cell and c-kit cell regeneration of the heart can be easily verified at the public NIH grant funding RePORTer website. The whistleblower's claim that many of the Anversa group's findings could not be replicated is also a verifiable fact. It may seem unfair to condemn Anversa and his group for creating an atmosphere of secrecy and obedience which undermined the scientific enterprise, caused torment among trainees and wasted millions of dollars of tax payer money simply based on one whistleblower's account. However, if one looks at the entire picture of the amazing rise and decline of the Anversa group's foray into cardiac regeneration, then the whistleblower's description of the atmosphere of secrecy and hierarchy seems very plausible.

The investigation of Harvard into the Anversa group is not open to the public and therefore it is difficult to know whether the university is primarily investigating scientific errors or whether it is also looking into such claims of egregious scientific misconduct and abuse of scientific trainees. It is unlikely that Anversa's group is the only group that might have engaged in such forms of misconduct. Threatening dissenting junior researchers with a loss of employment or visa status may be far more common than we think. The gravity of the problem requires that the NIH – the major funding agency for biomedical research in the US – should look into the prevalence of such practices in research labs and develop safeguards to prevent the abuse of science and scientists.